PIN CONFIGURATION OF INTEL 8085 µP

Dr. A. ABBAS MANTHIRI Assistant Professor of Physics Jamal Mohamed College(Autonomous) Tiruchirappalli - 20

The 8085 is an 8-bit general purpose microprocessor that can address
64K Byte of memory

 It has 40 pins and uses +5V for power. It can run at a maximum frequency of 3 MHz

The pins on the chip can be grouped into 6 groups:

- · Address Bus
- . Data Bus
- . Control and Status Signals
- . Power supply and frequency
- . Externally Initiated Signals
- . Serial I/O ports

8085 Pin description :

Higher Order Address pins- A₁₅ – A₈

The address bus has 8 signal lines A8 – A15 which are unidirectional

Lower Order Address/ Data Pins- AD₇-AD₀

- These are time multiplexed pins and are de-multiplexed using the pin ALE
- So, the bits AD0 AD7 are bi-directional and serve as A0 A7 and D0 D7 at the same time
- During the execution of the instruction, these lines carry the address bits during the early part, then during the late parts of the execution, they carry the 8 data bits
- In order to separate the address from the data, we can use a latch to save the value before the function of the bits changes

Control Pins – RD, WR:

 These are active low. When it goes low, the selected memory or I/O device is Read and Write

\checkmark Status Pins – ALE, IO/M (active low), S₁, S₀:

- ALE (Address Latch Enable)-Used to de-multiplex AD₇-AD₀
- IO/M Used to select I/O or Memory operation
- S_1, S_0 Denote the status of data on data bus

The various operations of Status Signals:

IO/M	S1	S2	OPERATIONS
-	0	0	HALT
1	0	1	IO WRITE
1	1	0	IO READ
0	0	1	MEMORY WRITE
0	1	0	MEMORY READ
1	1	1	IO FETCH
0	1	1	MEMORY FETCH

> DMA (Direct Memory Access) pins – HOLD, HLDA:

These pins are used when data transfer is to be performed directly between an external device and the main memory of the system

Interrupt Pins – TRAP, RST7.5, RST 6.5, RST 5.5, INTR, INTA:

These are hardware interrupts used to initiate an interrupt service routine stored at predefined locations of the system memory

Serial I/O pins – SID (Serial Input Data), SOD (Serial Output Data):

. These pins are used to interface 8085 with a serial device

Clock Pins- X₁, X₂, CLK(OUT):

• X_1, X_2 - These are clock input pins. A crystal is connected between these pins such that $f_{crystal} = 2f_{8085}$ where $f_{crystal} = crystal$ frequency & $f_{8085} = operating$ frequency of 8085

- CLK(OUT) – This is an auxiliary clock output source

Reset Pins – Reset In (active low), Reset Out:

- Reset In is used to reset 8085. It resets the programme counter to zero
- whereas **Reset Out** can be used to indicates that the CPU is being reset

Power Supply Pins – +V_{cc}, V_{ss} :

• It is +5 volts supply pin and a ground pin